## How to average gradients in Tensorflow

Sometimes, we need to average an array of gradients in deep learning model. Fortunately, Tensorflow divided models into fine-grained tensors and operations, therefore it’s not difficult to implement gradients average by using it. Let’s see the code from github：

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 |
with tf.variable_scope(tf.get_variable_scope()): for i in xrange(FLAGS.num_gpus): with tf.device('/gpu:%d' % i): with tf.name_scope('%s_%d' % (cifar10.TOWER_NAME, i)) as scope: # Dequeues one batch for the GPU image_batch, label_batch = batch_queue.dequeue() # Calculate the loss for one tower of the CIFAR model. This function # constructs the entire CIFAR model but shares the variables across # all towers. loss = tower_loss(scope, image_batch, label_batch) # Reuse variables for the next tower. tf.get_variable_scope().reuse_variables() # Retain the summaries from the final tower. summaries = tf.get_collection(tf.GraphKeys.SUMMARIES, scope) # Calculate the gradients for the batch of data on this CIFAR tower. grads = opt.compute_gradients(loss) # Keep track of the gradients across all towers. tower_grads.append(grads) # We must calculate the mean of each gradient. Note that this is the # synchronization point across all towers. grads = average_gradients(tower_grads) ...... apply_gradient_op = opt.apply_gradients(grads, global_step=global_step) |

We should keep in mind that these codes will only… Read more »